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Abstract 
 

This report presents the findings of a research project with Lotto Systems Group, 

Redwood City, CA. This research focuses on the question: “If a fortune-teller is able to 

provide a set of N numbers and guarantee that P of the future draws will be out of his/her 

set, how do we select a minimum set of tickets that will guarantee a win?” Initially a 

backtracking algorithm was implemented that systematically searches through the 

solution space of all possible ticket sets for a minimum set of tickets. Subsequent 

attempts were made to find faster algorithms for this exponential time problem using 

randomization. The solutions produced by these algorithms have been found to be close 

to optimal and better than published results. 

 

 

Introduction 

 

In a lottery, there is a set of M possible numbers to choose from. For example, in the New 

York Pick-6 Lotto, M is equal to 54. The lottery is defined by two other parameters: the 

number of numbers picked per ticket, R ( in the New York Pick-6 Lotto, R = 6 ) and the 

minimum number of correct numbers on a ticket to win a prize, J. Here we assume a 

clairvoyant fortune-teller who has narrowed the set of numbers to choose from, 

promising that P numbers will be drawn from a predicted set of size N. With this insight, 

we seek to buy the smallest number of tickets to guarantee a win. 

 

In order that a minimum winning set be theoretically computable, we assume that the 

following input constraints are met: J <= P <= R <= N. Notice in particular that P should 

be greater than or equal to J, or in other words, the fortune-teller must guarantee, from 

his/her set, at least the minimum number of outcomes required to win a prize in a future 

draw. 

 

The problem of finding a minimum set of tickets that will guarantee a win is not a trivial 

one. Given that P out of R outcomes will be from the fortune-teller set, it is not difficult 

to see that there are NCP = (N/P!)/(N-P)! possible P-subsets from the fortune-teller set 

that can occur in the winning ticket. If we were to pick all P-subsets from the fortune-

teller set W times and fill in the remaining R-P slots arbitrarily, the set of tickets obtained 

will have at least W occurrences of each P-subset and guarantee us W wins. However, 

such a set need not be a minimal one and in most cases is not.   

 



We know from the fortune-teller’s promise that one of the P-subsets will occur in the 

winning ticket. It is possible for two P-subsets to differ by less than J numbers. When 

such a situation arises, the subsets are said to overlap or cover one another with respect to 

the shared J numbers and only one of the P-subsets must be in a purchased ticket. This 

phenomenon is best illustrated using an example. Suppose we are playing the PICK-4 

Lotto and require one 2/4 win. Hence R=4, J=2 and W=1. Furthermore let’s assume that 

the fortune-teller predicts 3 numbers from a set of 5 numbers ( i.e. P=3 and N=5 ). If all 

P-subsets were taken from the fortune-teller set and arbitrarily filled to complete the 

tickets, we would have a set of ten tickets that guarantees one 2/4 win ( See Figure 1 ). 

However, it is also possible to exclude some tickets from this set because of several two-

number overlaps. For instance the subset {3, 4, 5} is different than {1, 3, 5} by only one 

number and it will be wasteful to use both of these in purchased tickets. We might think 

that not including {3, 4, 5} will permit the possibility of losing, but that is not the case 

since if {3, 4, 5}occurs we will have ‘3’ and ‘5’ in {1, 3, 5}that we bought to claim the 

prize! Similarly there can be many more redundant P-subsets. An optimal solution is 

shown in Figure 2. Our lottery problem is that of finding the smallest set of P-subsets 

from the fortune-teller set that guarantees the specified number of wins by keeping the 

number of overlaps to a minimum. This set of P-subsets defines the winning set 

regardless of what numbers are used to complete the R slots on the ticket. 

 

In order to obtain an estimate for the optimal cardinality of the winning ticket set, we 

define a distance function that maps two P-subsets to an integer equal to the number of 

different members in the two sets. With the given input constraint, each P-subset covers 

or overlaps with other P-subsets at distances less than or equal to P-J. In other words, if 

the distance between two P-subsets is equal to P-J or greater, the two subsets do not 

overlap.  The total number of other subsets covered by a particular P-subset is given by 

the sum of those at a distances from 0 to P-J. As explained earlier a naive way to 

guarantee W wins is to pick W  NCP P-subsets. Such a set is not optimal because of 

overlaps. Each P-subset overlaps with I 
N-PCI * PCI  subsets and so assuming all overlaps 

can be avoided, the lower bound would be (W  NCP ) I 
N-PCI * PCI. However, it should 

be noted that this lower bound is not always obtainable because the assumption will not 

always be true. 

 

Each of these P-subsets could either form a ticket in the winning ticket set or be left out 

(i.e. there are two choices). Hence, the total number of possible ticket sets is given by the 

formula 2 , where  = NCP. To find an exact solution to the problem, each of these ticket 

sets will have to be examined to check if it guarantees a win or not; the smallest of these 

sets would then be picked. The checking process itself does not have a polynomial time 

complexity. There are NCJ possible subsets in the fortune-set which are equally likely to 

occur and a winning ticket set must include all of these. Hence the total time complexity 

of an exact algorithm is 2 NCJ. The lottery problem requires exponential time to solve 

exactly.1Hence a backtracking algorithm which attempts to solve the lottery problem 

exactly, will inevitably take ages to compute when encountered with a difficult set of 

input data ( For example, when  is large ). 

 

 

Добавлено примечание ([AJ1]):  



Objective 

 

The objective is to use heuristics such as randomization to develop approximate 

algorithms to solve the lottery problem that are much faster than the exact backtracking 

algorithm and yet produce winning ticket sets with cardinality close to the lower bound. 

 

 

Procedure 

 

Backtracking 

The first algorithm implemented is an exact backtracking algorithm similar in nature to 

the algorithm used to solve the Eight Queens Problem2. A naive backtracking algorithm, 

simply searches through the solution space of all possible ticket sets and keeps record of 

the minimum winning set. Such an algorithm is doomed to hit a combinatorial wall for 

even modest size input parameters. An improvement to the naive algorithm is to 

incorporate ‘pruning’ of the solution space to be explored. In other words, not every 

ticket set need be explored. In spite of employing pruning strategies, this algorithm is 

bound to be slow and hence will not run to completion for difficult input data. 

 

Randomization 

The two randomized algorithms implemented use a linear congruential random number 

generator to produce random tickets.3 These are variants of the same basic algorithm 

which is to select a group of P-subsets from the fortune-teller set that guarantee the type 

of win required W times with minimum overlaps. The selected P-subsets then define a 

winning set regardless of the numbers picked to complete the tickets. The algorithms 

sample  random P-subsets at a time and each time pick the one that covers or overlaps 

with the most uncovered subsets of the fortune-teller set. In doing so they also keep a 

count of how many times each subset was covered. The algorithms are outlined below for 

the interested reader. 

 

  

Algorithm #1 

 

A. For i = 1 to W do: 

            1. Randomly pick 'total' P-subsets one at a time and add a subset iff the # of 

             overlaps with another picked subset is < i 

B. While the ticket set does not guarantee W wins do: 

             1. Sample  random P-subsets. 

             2. Add the subset with maximum win coverage. 

 

 

Algorithm #2 

 

A. While the ticket set does not fulfill required wins, do: 

             1. Sample  random P-subsets. 

             2. Add the subset with maximum win coverage. 

Добавлено примечание ([AJ2]):  



 

 

 

Results 
 

Results on various input data show that, given enough time, a backtracking algorithm will 

generate winning ticket sets with cardinality equal to or slightly greater than the lower 

bound, because our lower bound may in fact not be achievable. However, it is only 

practicable to use such an algorithm if the total number of tickets sets ( i.e.  ) is small 

since it is an exponential time algorithm. Unfortunately,  is typically too large for input 

parameters of practical interest and so this approach ends up with winning ticket sets of 

cardinality well above the lower bound when constrained by time. 

 

Experiments with the randomized algorithms show that the performance increases as the 

sampling pool, , is increased from 1, but becomes steady for  greater than 100 ( See 

Figure 3 ). This suggests that the algorithms do in fact approach the optimal obtainable 

ticket set. Also, performance is not increased if 2 or 3 tickets are collectively sampled at a 

time instead of only 1 ticket at a time. These algorithms are much faster than the exact 

algorithm and produce results close to the lower bound. Some solutions of general 

interest are shown in Table 1.  A comparison with published solutions4 shows better 

performance in some cases ( see Table 2 ). For example, in Pick-5 Lotto, the published 

solution offers 9 tickets for 7.14 % win probability. Our algorithms provide similar 

coverage per number of tickets bought while achieving a100% win probability, which is 

inherently more difficult to do. 

   

An interesting observation is that the number of tickets required for W wins is not just W 

times the number of tickets required for one win ( see Table 1 ). The reason for this is that 

even though the lower bound calculated above assumes no overlap it is almost impossible 

to have no overlaps. However, if these overlaps are recorded they can be used towards 

another win, hence reducing the number of extra tickets required. It is also interesting to 

note that as the number of subsets increases, the greater are the chances of overlap and 

the deviation from the lower bound ( see Figures 4A and B ). 

 

 

Conclusions 
 

From the research conducted on the lottery problem it can be concluded that approximate 

methods using heuristics such as randomization can be devised, to produce close to 

optimal solutions in short time intervals. Our work has been licensed by Applied Lotto 

Systems for use in their future products. 

 

 

References 
 

[1] Cormen, Leiserson, and Rivest, Introduction to Algorithms, MIT Press, 1990. 

[2] Tucker, Applied Combinatorics, John Wiley & Sons, 1984. 



[3] Nijenhuis and Wilf, Combinatorial Algorithms, Academic Press, 1975. 

[4] Serotic R., Pick-5 Lotto, L.S.I. Publishing, Inc., Menlo Park, CA, 1989. 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

{1, 2, 3, X } 

{1, 2, 4, X } 

{1, 2, 5, X } 

{1, 3, 4, X } 

{1, 3, 5, X } 

{1, 4, 5, X } 

{2, 3, 4, X } 

{2, 3, 5, X } 

{2, 4, 5, X } 

{3, 4, 5, X } 

FIGURE 1 

All 3-subsets of the 5 numbers in the fortune-teller set are used to 

form ten tickets that will guarantee one 2/4 win because one of 

these subsets has been promised to occur in the winning ticket.  An 

“X” represents an arbitrarily picked number to complete the ticket. 



 

 

 

 

 

 

 

 

 
 

 

 

 

  

{1, 3, 5, X } 

{2, 4, 5, X } 

FIGURE 2 

Only two of the ten 3-subsets of the 5 numbers in the fortune-teller 

set are used to form a minimal ticket set that will guarantee one 2/4 

win. This is possible because there are many two number overlaps  

between the 3-subsets. An “X” represents an arbitrarily picked 

number to complete the ticket. 



 

Numbers 

to be 

picked in a 

game. 

Numbers 

required 

for a win. 

Size of 

fortune-

teller set. 

Numbers 

promised 

from the 

FT set. 

Number of 

wins 

required. 

Estimated 

lower 

bound. 

Number of 

tickets 

identified. 

Time / sec 

IBM 486 

DX w/ 

Linux OS 

5 4 15 5 1 58 137 95 

5 4 15 5 2 117 218 147 

5 4 15 5 3 176 294 163 

5 5 15 5 1 3003 3127 333 

6 4 15 5 1 58 138 145 

6 5 15 5 1 3003 3109 346 

6 6 15 6 1 5005 5129 503 

5 4 18 5 1 129 330 432 

6 4 18 5 1 129 330 449 

10 6 18 7 1 408 1080 919 

 

TABLE 1 
  



Source. Size of fortune-

teller set. 

Numbers 

promised from 

FT set. 

Number of 

tickets 

identified. 

Win 

probability. 

Number of 

tickets for 1% 

coverage. 

Reference 4 9 5 9 7.14 % 1.26 

Algorithm 

2 

9 5 127 100 % 1.27 

Reference 4 10 5 14 5.56 % 2.52 

Algorithm 

2 

10 5 254 100 % 2.54 

Reference 4 11 5 11 2.38 % 4.62 

Algorithm 

2 

11 5 467 100 % 4.67 

Reference 4 13 5 57 4.42 % 12.89 

Algorithm 

2 

13 5 1351 100 % 13.51 

 

TABLE 2 

This table compares the results obtained with Algorithm #2 to those published in reference 4. The results 

are for PICK-5 Lotto ( i.e. R = 5 ) and one required win for the jackpot ( i.e. J = 5 & W = 1 ). 
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